Toward Safe and Natural High Performance Enclosures
Nature is toxic enough
Nature is toxic enough

Can we avoid making life more toxic?
Eat food. Not too much. Mostly plants.
The Dose Makes The Poison

<table>
<thead>
<tr>
<th>Substance</th>
<th>Where you find it</th>
<th>Lethal Dose (mg substance / kg of body weight)</th>
<th>Lethal Dose (Oz per 100lbs of body weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botulin</td>
<td>Improperly canned foods</td>
<td>0.00001</td>
<td>1.6e-11</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Cherry pits</td>
<td>10</td>
<td>0.016</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Coffee</td>
<td>200</td>
<td>0.32 (100 cups)</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Beer, wine, spirits</td>
<td>7,000</td>
<td>11.2</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>Orange juice</td>
<td>12,000</td>
<td>19.2</td>
</tr>
<tr>
<td>Sucrose</td>
<td>Sugar cane, sugar beets</td>
<td>30,000</td>
<td>48</td>
</tr>
</tbody>
</table>
THIS IS WHERE
I DRAW THE LINE
The Red List

- Asbestos
- Cadmium
- Chlorinated Polyethylene and Chlorosulfonated Polyethylene
- Chlorofluorocarbons (CFCs)
- Chloroprene (Neoprene)
- Formaldehyde (added)
- Halogenated Flame Retardants
- Hydrochlorofluorocarbons (HCFCs)
- Lead (added)
- Mercury
- Petrochemical Fertilizers and Pesticides
- Phthalates
- Polyvinyl Chloride (PVC)
- Wood treatments containing Creosote, Arsenic, or Pentachlorophenol
Buildings leaning green...

- USGBC LEED
- Green Seal
- Greenspec
- Greenguard
- Environmental Product Declaration EPD: ISO 14025
- California EPA Air Resources Board
- Perkins & Will’s Precautionary List
Buildings leaning green...

Declare Label
- A project of International Living Future Institute
- Label to serve as voluntary ‘nutrition-label’ for building materials
- Provides product ingredients in support of the program’s Red List and Appropriate Sourcing Imperatives
Buildings leaning green...

Pharos Project
• Evaluates building products & components
• Profiles chemicals and materials for 22 health and environmental hazards
• Rates over 250 product certifications and uses them in building product evaluations
• Meta-analysis of hazard lists from gov, NGO, and expert bodies
Buildings leaning green...

The SHI Health Passport

• Leader in health-conscious and allergy friendly construction
• Performance measures of individual components and whole-house analysis
• Free of aldehydes
• Free of SVOC and TVOC
• Strict measure of particulate matter, mold, \(\text{CO}_2 \) levels and radon
Balancing Material Considerations
The Future?

Plastics!
Greenpeace - Pyramid of Plastics

- PVC = Polyvinyl chloride
- PS = Polystyrene
- ABS = Other resins, like acrylonitrile butadine styrene
- PU = Polyurethane
- PC = Polycarbonate
- PET = Polyethylene terephthalate
- PE = Polyethylene
- PP = Polypropylene
- HDPE = High-density polyethylene
- LDPE = Low-density polyethylene
<table>
<thead>
<tr>
<th>Materials Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulations</td>
</tr>
<tr>
<td>ccSpray foam</td>
</tr>
<tr>
<td>ocSpray foam</td>
</tr>
<tr>
<td>XPS foam/Polyiso</td>
</tr>
<tr>
<td>EPS foam</td>
</tr>
<tr>
<td>Fiberglass</td>
</tr>
<tr>
<td>Mineral wool</td>
</tr>
<tr>
<td>Wood Fiber Board/PU Binder</td>
</tr>
<tr>
<td>Cellulose</td>
</tr>
<tr>
<td>Hempcrete</td>
</tr>
<tr>
<td>Cork</td>
</tr>
<tr>
<td>Straw Bale</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Thermal Control

- Thermal Bridge Free Construction
- Continuous Insulation
 - Double-Stud
 - I-Joist Outrigger
 - Uninterrupted Board Insulation
Foam Insulation... Less is Best

Spray Foam
Part A:
• MDI (methylenediphenyl diisocyanate), aniline, formaldehyde, hydrochloric acid and phosgene
Part B:
• Flame retardants:
 • halogenated organic compounds (chlorine or bromine bonded to carbon)
• Catalysts:
 • Amine Compounds
• Blowing Agent:
 • closed cell - hydrofluorocarbon blowing agent (EXCEPT AT OPEN CELL/EPS)
Foam Insulation... Less is Best

Spray Foam

Part A:
• MDI (methylene diphenyl diisocyanate), aniline, formaldehyde, hydrochloric acid and phosgene

Part B:
• Flame retardants:
 • halogenated organic compounds (chlorine or bromine bonded to carbon)
• Catalysts:
 • Amine Compounds
• Blowing Agent:
 • closed cell - hydrofluorocarbon blowing agent (EXCEPT AT OPEN CELL/EPS)
 • On-site manufacturing
 • Difficult quality control
 • Long term performance issues
 • Burning produces hydrogen cyanide
Foam Insulation... Less is Best

Spray Foam
Part A:
- MDI (methylene diphenyl diisocyanate), aniline, formaldehyde, hydrochloric acid and phosgene

Part B:
- Flame retardants:
 - halogenated organic compounds (chlorine or bromine bonded to carbon)
- Catalysts:
 - Amine Compounds
- Blowing Agent:
 - closed cell - hydrofluorocarbon blowing agent (EXCEPT AT OPEN CELL/EPS)

- On-site manufacturing
- Difficult quality control
- Long term performance issues
- Burning produces hydrogen cyanide

Board Foam
- Part A: Same
- Part B: Same
- Better control in factory environment
Insulations

Mineral wool:
Roxul
Urea-extended phenol formaldehyde binder - very low ppm (Greenguard)
No flame retardants

Fiberglass:
Typically with phenol formaldehyde binder
Dense pack: Jet Stream Ultra binder free by Knauf
Below: JM Spider with hydrolyzed polyester binder

Alex Wilson, BuildingGreen
Insulations

Cellulose:

15% Borates for fire, pest and mold prevention.

Woodfiber Board:

Gutex & Agepan

High recycled content, ~1% PU binder
Insulations

Cork:
Heat process, natural binders, no additives

Straw bale:
No chemical processing.
Membranes/Barriers

- Liquid Asphalt: Tremco Enviro Dri
- OSB with 10% MDI Resin: Huber ZIP
- silyl-terminated-polyether (STPE): Prosoco R Guard, tyvek liquid etc
- TEEE thermoplastic elastomer ether ester: Pro Clima SOLITEX
- Polyethylene copolymer: Pro Clima INTELLO
- Nylon: CertainTeed MemBrain
- Superadobe, clay, lime plaster

Cal Earth

Superadobe Home
Connections

- Rubberized Asphalt: Grace Vycor Plus
- Butyl/MDI Adhesive: Dupont FlexWrap
- Butyl-Acrylic: Pro Clima EXTOSEAL
- silyl-terminated-polyether (STPE): ZIP Liquid Flash & Prosoco Fast Flash
- Acrylcopolymers: Pro Clima Contega HF caulk adhesive
- EPDM rubber gaskets: Pro Clima Roflex
- Acrylic Tape: Pro Clima, Siga, Huber, 3m
Sheathings

OSB
- Bind the fibers either with phenol formaldehyde or polymeric methylene diisocyanate (pMDI)

Plywood
- Phenol formaldehyde

Plank
- Local sourcing
- No chemical additives
Putting It All Together
High Performance Priorities
Airtightness

Ref http://passipedia.passiv.de/passipedia_en/

Inboard Airbarrier
Vapor - Moisture Loading

In winter constructions are exposed to moisture:

Only Diffusion is calculated during the planning process.

Conclusion:
There is no absolute protection against moisture.
Vapor Control

• Increase drying reserves
• Drying capacity > moisture stress = avoid damages

• As enclosures get colder, importance of vapor control grows

• Vapor drives need to be addressed

• Prevent the wetting and help the drying!
About Using WUFI Pro

• A relative risk assessment not an absolute risk assessment
• Examining for high moisture risk at critical components
• Five year look
• Using Moisture Content as proxy
 – <15%MC = safe/low risk OSB, plywood
 – <18%MC = acceptable risk for wood> OSB?
 – 20%MC = danger threshold, significant risk also for solid wood
 – >20%MC = rising risks
• Higher insulation values = Higher risks
• Don’t design safety factors out of the wall: maintain drying reserves
Making the Assembly

- Wood Frame - thickness varies
- R25 (ish)
- Stucco or OSB
- Airtight - location varies
- Vapor control - varies
- San Francisco Location with North Orientation
Climate - San Francisco
Climate - San Francisco

Climate San Francisco - California

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average high in °F:</td>
<td>57</td>
<td>60</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>Average low in °F:</td>
<td>46</td>
<td>47</td>
<td>49</td>
<td>49</td>
<td>51</td>
<td>53</td>
</tr>
<tr>
<td>Av. precipitation in inch:</td>
<td>4.45</td>
<td>4.55</td>
<td>3.27</td>
<td>1.46</td>
<td>0.71</td>
<td>0.16</td>
</tr>
<tr>
<td>Days with precipitation:</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hours of sunshine:</td>
<td>165</td>
<td>182</td>
<td>251</td>
<td>281</td>
<td>314</td>
<td>330</td>
</tr>
</tbody>
</table>

San Francisco Climate Graph - California Climate Chart

- **Low**
- **High**
- **Precipitation**
Cellulose: Stucco, OSB outboard / GWB inboard

- Just crossing the line
- Wet months in risky territory
- Diagram of assembly:
Fiberglass: Stucco, OSB outboard / GWB inboard

- Well into the danger zone
- No inboard vapor control
- Diagram of assembly:

Stucco
Fiberglass: Rainscreen, OSB outboard / 2x6, GWB inboard

- Less danger than Stucco
- Still risky
- Diagram of assembly:

![Diagram of Fiberglass Rainscreen Assembly]

Water Content [M.-%]
Cellulose: Rainscreen, OSB outboard / 2x6, GWB inboard

- Within acceptable risk if all stays dry
- No vapor control
- Diagram of assembly:

![Diagram of assembly]

Oriented Strand Board (density 615 kg/m³)

Water Content [M.-%]

1/1/2014 1/1/2015 1/1/2016 1/1/2017 1/1/2018

Water Content [M.-%]

Cellulose

![Graph showing water content over time]
Cellulose: OSB outboard/smart vapor membrane inboard

- Cellulose is slow to dry from construction moisture loading.
- Diagram of assembly:
Fiberglass: OSB outboard/smart vapor membrane inboard

- Vapor variable membrane mitigates risk
- Diagram of assembly:

![Diagram of assembly]

Stucco
Smart Vapor Retarder
OSB/Vapor-open WRB
Cellulose: WRB outboard /9”l-joist OSB inboard

- Some wetting in winter
- Dries quickly
- OSB vapor control inboard
- Diagram of assembly:

![Diagram of assembly]

Water Content [M.-%]

[Graph showing water content over time]
Mineral Wool Over OSB
Mineral wool: 2” rigid, OSB outboard/ 2x6, GWB inboard

- Mineral wool does the job
- Diagram of assembly:

![Diagram of mineral wool assembly](image-url)

Diagram of assembly:

- Mineral wool
- Oriented Strand Board (density 615 kg/m³)
- Water Content [M.-%]

![Graph of water content](image-url)

Graph of water content:

- Water Content [lb/ft²]
- 1/1/2014 to 1/1/2018

Graph details:

- Water Content [M.-%]
- 12.37 to 15
- 1/1/2014 to 1/1/2018

WUFI® Pro 5.2; 151109 PH CA net zero conference foam free.W5P; Case 7; 2x6 3in Mineral wool; 11/9/2015
Wood Fiberboard w/rainscreen outboard/ 2x6, Cellulose inboard

- 2-3/8” board +2x6 cell
- Works beautifully
- No inboard vapor control
- Diagram of assembly:

Water Content \[\text{M.-%}\]

Oriented Strand Board (density 615 kg/m^3)
Straw Bale
Straw bale w/rainscreen / OSB inboard

- 22” of insulation
- OSB (or plaster) inboard vapor control
- Diagram of assembly:

Oriented Strand Board (density 615 kg/m³)

Water Content [% M.-%]

Water Content [% M.-%]

1/1/2014
1/1/2015
1/1/2016
1/1/2017
1/1/2018
• Low toxicity is a vital high-performance goal.

• We can’t completely detoxify, but we can push the limit of acceptable risk.

• To the extent we keep potentially hazardous chemical out the less the rest of the worries matter.

• Performance ≠ toxicity. Greener choices can get higher performance.
THANK YOU...

More info @ foursevenfive.com
Details
Details